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Abstract Motivated by Sasaki’s work on the extended Hensel construction for solving multivariate algebraic

equations, we present a generalized Hensel lifting, which takes advantage of sparsity, for factoring bivariate

polynomial over the rational number field. Another feature of the factorization algorithm presented in this

article is a new recombination method, which can solve the extraneous factor problem before lifting based on

numerical linear algebra. Both theoretical analysis and experimental data show that the algorithm is efficient,

especially for sparse bivariate polynomials.
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1 Introduction

Polynomial factorization has been one of the most attractive areas in symbolic computation for a long

time. Roughly speaking, it can be dated back to the Babylonians’ algorithm to solve quadratic equations,

around 1900–1600 BC [18]. The first polynomial-time algorithm for univariate polynomial factorization

is due to Lenstra et al. [44], and the first kind of polynomial-time algorithms for multivariate polynomial

factorization are due to Kaltofen [29–31]. Nowadays, polynomial factorization plays a significant role

for both challenges and open problems and it addresses as well its usefulness in applications in various

fields including the simplification, primary decomposition, solving polynomial equations, algebraic coding

theory, cryptography, etc.

In this article, we present an efficient method for computing the irreducible factorization of any bivariate

polynomial over the rationals satisfying Hypothesis (H) (see Subsection 1.1.1 for the hypothesis).

We start this introduction with some preliminaries and hypotheses. Then we present our main results

and give an overview of the main steps of our algorithm. At the end of this section, we conclude with

discussing related works.

1.1 Preliminaries

Let Z and Q represent the integer ring and the rational number field, respectively. Throughout this

article, let f be the bivariate polynomial in Z[x, y] that we want to factorize, and we assume that it is

squarefree; it has no univariate factors; its degrees are dx in x and dy in y.

∗Corresponding author
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1.1.1 Hypothesis (H)

Among so many different methods for bivariate polynomial factorization, the most popular strategy is the

so-called lifting and recombination. One firstly factorizes f(x, 0) over Q, then lifts the resulting univariate

factors over a power series algebra, and lastly retrieves the bivariate factorization from recombination of

the lifted factors. The lifting is the classical Hensel lifting (see, e.g., [21, Chapter 6]), and we call the

univariate factors of f(x, 0) the initial factors for the classical Hensel lifting. For the generalized Hensel

lifting presented in this article, the initial factors play a similar role, but they are different from that for

the classical Hensel lifting. We will redefine the initial factors in this section. Before we do that, we need

some basic concepts.

The convex hull of a set V of vectors in Rn (n-dimensional real vector space) is defined to be

conv(V ) =

{ k
∑

i=1

λivi : vi ∈ V, λi ∈ R>0, and

k
∑

i=1

λi = 1

}

,

where R>0 denotes the non-negative real numbers. If |V | is finite, then the convex hull of V is called

a convex polytope, where |V | denotes the cardinality of V . A point of a polytope is called a vertex if it

is not on the line segment of any two other points of the polytope. An edge of a polytope is the line

segment of two vertices. It is well known that a polytope is always the convex hull of its vertices. The

Newton polytope of a bivariate polynomial f =
∑

fi,jx
iyj is defined to be the convex hull in R2 of all the

points (i, j) with fi,j 6= 0, and denoted by Nf .

Definition 1.1. The low degree of a univariate polynomial is the lowest degree of non-zero terms in

the polynomial expressed in canonical form, i.e., as a sum of terms.

Definition 1.2. The Newton line of f is defined to be an edge of Nf decided by the right-bottom-most

point of Nf and another point such that no vertex of Nf is below this edge. The sum of all non-zero

terms of f lying on the Newton line is called Newton polynomial of f , denoted by f (0)(x, y).

From this definition, the Newton line and the corresponding Newton polynomial of a given bivariate

polynomial are unique, respectively. Let δ̂ and d̂ > 0 be two integers such that gcd(δ̂, d̂) = 1 and δ̂/d̂ is

the slope of the Newton line of f . If the slope is 0 then δ̂ = 0 and d̂ = 1.

Definition 1.3. Let δ̂ and d̂ > 0 be the two integers as above. For an integer k > 0 and an integer

n > 0, define

Ik(n) := {xjy−(n−j)δ̂/d̂ · yk/d̂ : j = 0, . . . , n}.
Definition 1.4. Let f and g be two polynomials in Z[x, y]. For an integer k > 0 and an integer n > 0,

define f − g ≡ 0 mod Ik(n) (or written as f ≡ g mod Ik(n)) such that the low degree with respect to y

of the coefficient of xj in f − g is greater than or equal to (k − δ̂(n− j))/d̂, where j ranges from 0 to n.

We note that the meaning of mod in this article is completely different from the convention, where

f ≡ g mod I usually indicates f − g belongs to an ideal I. We shall give more details about these

definitions in Subsection 2.2.

Definition 1.5. Let f be a bivariate polynomial in Z[x, y], G1, . . . , Gr its irreducible factors over Q,

and di the degree of Gi with respect to x. For i = 1, . . . , r, define the initial factors of f , denoted by

G
(0)
i , as the polynomials such that

{

G
(0)
i ≡ 0 mod I0(di),

G
(0)
i ≡ Gi mod I1(di).

Example 1.6. Let f = x8 − 3 x4y2 + 5 x4y5 − 4 y4 + 5 y7 + 2 y3x4 − 8 y5 + 10 y8. Over Q, f has 2

irreducible factors G1 = x4 + y2 + 2 y3 and G2 = x4 − 4 y2 + 5 y5.

Figure 1 illustrates the Newton polytope and the Newton line of f , where ex and ey represent the

exponents of the monomial xexyey in x and y, repectively. Hence, the Newton polynomial of f is

f (0)(x, y) = x8 − 3 x4y2 − 4 y4,
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ex

ey

Newton line

Figure 1 The Newton polytope of f

ex

ey

Figure 2 The Newton polytope of G2

each of whose monomials corresponds to an integral point on the Newton line (see Figure 1). Here,

δ̂ = −1 and d̂ = 2. Thus

I0(4) = {y2, xy 3

2 , x2y, x3y
1

2 , x4},

which corresponds to points with integral ex on the Newton line of G2, as in Figure 2, and

I1(4) = {y 5

2 , xy2, x2y
3

2 , x3y, x4y
1

2 }.

It follows from Definition 1.5 that G
(0)
2 = x4 − 4 y2 is an initial factor of f . Note that G

(0)
2 is reducible

over Q.

It is worth mentioning that the Newton polynomial and some similar definitions were introduced by

Sasaki et al. [25–28,49–51,53] for solving multivariate algebraic equation and Puiseux series factorization

of multivariate polynomials. In Subsection 1.2, we will discuss the differences between the work of Sasaki

et al. [49–54] and that in this article.

Throughout this article, we assume on f(x, y) ∈ Z[x, y] and its initial factors such that the following

hypothesis hold:

(Ha) f is squarefree and has no univariate factors;

(Hb) f is non-constant and monic in x;

(Hc) the initial factors of f are mutually coprime.

Note that (Ha) and (Hb) are not really restrictive, but for simple illustration: For any f having

univariate factors, we can reduce it to (Ha) by computing f/ gcd(f, ∂f
∂x ) or f/ gcd(f, ∂f

∂y ); the leading

coefficient problem can also be solved by the methods in [32, 55, 56]. However, (Hc) is crucial since it

indicates the applicability of our method.

1.1.2 Complexity model

Following a popular way, such as in [8,40,43], we use computational tree model (see [9, Chapter 4]) for our

complexity analysis. Roughly speaking, this means that the cost of each arithmetic operation (+,−,×,÷)

or the equality test is a constant in the ground field. Denote by M(n) the complexity of multiplying two

polynomials of degree at most n. As in [19, Chapter 8], we assume that M is supper-additive: For two

positive integers m and n, M(m + n) > M(m) +M(n). The constant ω represents the linear algebra

exponent, i.e., the multiplication of two n×n matrices can be computed in O(nω) operations (2 < ω 6 3),

and so can the matrix inversion of an n× n matrix (see, e.g., [48, Chapter 2]). The Õ notation ignores

logarithmic factors. As in [19, Chapter 25], we write f ∈ Õ(g) if there exist two positive integer c and N

such that f(n) 6 g(n)(log(3 + g(n)))c for all n > N .
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1.2 Overview of the algorithm and contributions

Under Hypothesis (H), we consider the following three-stage bivariate polynomial factorization algorithm:

1. Factorize Newton polynomial. Factorize the Newton polynomial f (0)(x, y) in Z[x, ŷ], denoted by

f (0) = g1 · · · gs, where ŷ = y−δ̂/d̂.

2. Combine. Combine g1, . . . , gs to the initial factors G
(0)
1 , . . . , G

(0)
r .

3. Lift. Lift the initial factors to the irreducible factors of f over Z.

Obviously, this algorithm is different from the traditional lifting and recombination strategy, since the

recombination is performed before lifting. The first stage is essentially a univariate factorization (see

Proposition 3.1). Therefore we focus on the last two stages.

Our first contribution is the generalized Hensel lifting. As mentioned in Subsection 1.1.1, some concepts

are motivated by the extended Hensel construction in [25–28, 49–51, 53]. Besides the similarities, there

are two main differences between ours and Sasaki et al.’s. The one is that we introduce a parameter n

in the definition of Ik(n), which can be considered as a generalization of that in the work of Sasaki et

al. [49–54]. More importantly, we correct [51, (3.11)], which is crucial in the lifting stage (see Remark 2.8

for detail). Thus the generalized Hensel lifting in this article is not only a simple generalization, but

also a modification of the work of Sasaki et al. [49–54]. Meanwhile, we redefine the initial factors of f .

The advantage is that if the lifting stage starts with the initial factors (see Definition 1.5), then, during

the lifting stage, all the lifted factors are exactly in Z[x, y], not in a power series algebra. Moreover, the

sparsity is preserved (see Section 2), in the sense that no extra term appears during lifting. Therefore,

there does not exist the expression swell problem during the generalized Hensel lifting.

For computing the initial factors, our seccond contribution is a novel recombination method which is

based on the use of numerical linear algebra. As in many common recombination methods in factorization,

such as [5, 8, 23, 39, 43], we employ logarithm to linearize the problem. Since f (0) = G
(0)
1 · · ·G(0)

r (see

Lemma 2.6), there must exist a unique vector µi = (µj,i) ∈ {0, 1}s such that G
(0)
i =

∏s
j=1 g

µj,i

j for

i = 1, . . . , r. After taking natural logarithm, we have

LnG
(0)
i =

s
∑

j=1

µj,iLn gj.

Here Lnz represents the complex natural logarithm function for z ∈ C. Differently from existing methods,

we use neither trace recombination nor logarithmic derivative recombination to construct the linear

system. Instead, we simply construct a linear system with full rank Jacobian by evaluating the equations

at some appropriate points. Thus, the solution µi can be easily obtained by numerical computation. We

prove the combination method is correct under certain error controls.

Here we need to point out that this combination method is not deterministic, since its validity depends

on an effective version of the Hilbert irreducibility theorem for bivariate polynomials. This is the only

one reason that causes our algorithm non-deterministic. More precisely, suppose g(x, y) ∈ Z[x, y] is

irreducible and let S be a subset of Q with |S| = N . We need an explicit bound on

|{b ∈ S : g(x, b) is irreducible in Q[x]}|
N

,

which is the probability that g(x, b) is irreducible when b is picked randomly from S. Finding a good

bound for this ratio in terms of N and the height of g is well-known open; see for example [19, pp. 469

–472]. However, experiments indicate that this probability is near to 1 when N is large enough. Totally,

our algorithm is not deterministic, but with a very highly successful probability in practice.

We have the following theorem to summarize the main result of this article, and its proof will be given

in Section 4.

Theorem 1.7. Assume that there exists an effective version of the Hilbert irreducibility theorem for

bivariate polynomials over Z. Given a bivariate polynomial f over Q satisfying Hypothesis (H), there

exists an algorithm which reduces the computation of the irreducible factors of f over Q to univariate

polynomial factorization with degree at most dx over Q in Õ(Tdxdy + sω) arithmetic operations in Q,
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where T is the number of non-zero terms of f , dx and dy are the degrees of f in x and y, respectively,

and s (6 dx) is the number of the irreducible factors in Z[x, ŷ] of the Newton polynomial of f .

To the authors’ knowledge, the best complexities for the reduction from bivariate polynomial fac-

torization over Q to univariate polynomial factorization are due to Lecerf [43], Õ((dxdy)
(ω+1)/2) in

the deterministic case and Õ((dxdy)
1.5) in the probabilistic case. We note that Lecerf’s algorithm

is for dense polynomials. The main algorithm in this article also works in dense case, but we have

T = O(dxdy). However, in sparse case, especially for those polynomials satisfying T < (dxdy)
1/2, we

have Õ(Tdxdy+ sω) ⊂ Õ((dxdy)
1.5), i.e., the present algorithm outperforms that in [43]. In [58], a sparse

version of a Lecerf’s algorithm was presented, which is based on polytope method. The complexity of the

reduction is O(Vol(Nf )
ω), where Vol(Nf ) is the volume of the Newton polytope of f . However, Vol(Nf )

is near to dxdy in the worst case, even though the input polynomial is sparse. Moreover, Hypothesis (H1)

in [58] is that the Newton polytope must contain (0, 0), (1, 0), and (0, 1), which is somewhat strict and

limits its applicability.

Our last contribution is the Maple implementation of our algorithm. The experimental results show

that our algorithm is efficient in practice (see Section 5).

1.3 Related works

We refer to [11, 18, 33–35,38] and references therein for details on existing algorithms and the history of

polynomial factorization. We only discuss related methods.

The work of Sasaki et al. [52–54] not only introduced the idea of extended Hensel construction, but

also initiated the trace recombination technique. The extended Hensel construction was then used for

solving multivariate algebraic equation and Puiseux series factorization of multivariate polynomials in

[25–28, 49–51]. The generalized Hensel lifting in this article is a generalization and also a modification

of the extended Hensel construction. It preserves the sparsity of the input polynomial during the lifting

stage.

The idea of trace recombination has been successfully applied to polynomial factorization, such as van

Hoeij’s trace recombination [23] for univariate polynomial factorization in Z[x], the logarithmic derivative

recombination of Belabas et al. [5] for factoring polynomials over global fields, etc. We refer to [8] for

more historical notes in this area. The combination method in this article commonly employs logarithm

to linearize the problem, but uses a different method to construct the linear system, which is then solved

by numerical linear algebra.

For multivariate polynomial factorization over number fields, many effective approaches, which are var-

ious Hensel lifting based algorithms, have been developed over the past few decades. These sophisticated

techniques and their complexity analysis have been studied extensively in [8,16,24,33,34,40–43,47,56,57].

However, it is well known that the Hensel lifting usually destroys the sparsity and leads to expression

swell. Although Bernardin worked on bivariate Hensel lifting and its parallelization [6], his work also

focuses on the dense case. The first attempt to this problem was addressed in [61, 62]. The author pre-

sented a probabilistic method to detect zero coefficient terms, namely the sparse structure, then convert

the lifting stage to solve linear systems with much smaller size by using sparsity. Von zur Gathen and

Kaltofen [17,20,32] substantially contributed to this subject and gave rigorous proofs for the probability

and the complexity of this scheme based on effective Hilbert Irreducibility Theorem.

In 1999, a polynomial-time approach to find factors of fixed degree, especially linear and quadratic

factors, in an algebraic extension of fixed degree, in particular to compute rational roots of univariate

supersparse polynomials, was given in [45,46] based on the result in [13]. The further study generalizing

to bivariate supersparse polynomials has been made by other researchers in [4, 36, 37]. We refer to [10]

for the most recent progress in this direction.

Another important direction for sparse polynomial factorization is by using Newton polytopes to

obtain the information about the supports. Gao’s work [15] initiated such a first step. Later on a new

type of factorization method appeared in [1, 3]. Abu Salem [2] presented a sparse adaptation of the

polytope method to factorize bivariate polynomials over finite fields, which also can be adapted to fields
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of arbitrary characteristic. Such polytope methods can perform well for sparse polynomials when their

Newton polytopes have very few Minkowski decompositions.

As mentioned previously, the algorithm having the currently best complexity for dense bivariate poly-

nomial factorization is due to Lecerf [43]. Weimann [58] presented a sparse version of Lecerf’s algorithm

and showed that sparse bivariate polynomial factorization has a polynomial complexity in the volume

of the Newton polytope of the input. But Weimman’s algorithm requires that the input must have the

constant term and the linear terms. The most recent advance [7] improves Weimman’s results and gives

a reduction algorithm which reduces the volume of the Newton polytope based on the use of unimod-

ular transformation. Recently, Weimann [59] presented an interesting method for bivariate polynomial

factorization without using Hensel lifting.

Note. The abstract of this paper was presented as a poster at the 37th International Symposium on

Symbolic and Algebraic Computation [60].

2 Generalized Hensel lifting

Let f ∈ Z[x, y] satisfy Hypothesis (H) and G1, . . . , Gr be its irreducible factors over Q. In this section,

we assume that initial factors G
(0)
1 , . . . , G

(0)
r are given. Under these assumptions, we give the generalized

Hensel lifting algorithm, which preserves the sparsity of the input polynomial. Moreover, the lifted factors

are always in Z[x, y].

2.1 Moses-Yun polynomial

Lemma 2.1. Let hi(x, y) (i = 1, . . . , r) be homogeneous polynomials in x and y with r > 2 and

degx(hi) = di > 1 such that

gcd(hi, hj) = 1 for any i 6= j. (2.1)

Then for each l ∈ {0, . . . , dx−1}, where dx =
∑r

i=1 di, there exists a unique set of polynomials {W (l)
i (x, y)}

satisfying

W
(l)
1 [h1 · · ·hr/h1] + · · ·+W (l)

r [h1 · · ·hr/hr] = xlydx−l,

degx(W
(l)
i ) < degx(hi), i = 1, . . . , r.

(2.2)

Moreover, each W
(l)
i is a homogeneous polynomial in x and y of total degree di.

Following [49], we call W
(l)
i (i = 1, . . . , r, l = 0, . . . , dx − 1) Moses-Yun (interpolation) polynomials,

which are used to represent the monomials lying on Newton line by initial factors. This lemma was

presented in [51] and its proof can be found there. In addition, its univariate version was presented

in [53, 54]. From the proof of this lemma, we can get the following algorithm to compute Moses-Yun

polynomials.

Algorithm 2.2 (Moses-Yun polynomials). Input: hi(x, y) (i = 1, . . . , r) satisfying the conditions in

Lemma 2.1. Output: The Moses-Yun polynomials W
(l)
i .

Step 1 (Compute W
(l)
i (x, 1)). For i from 1 to r do the following: Let G := hi(x, 1) and

H :=
r
∏

j=1

hj(x, 1)/G.

Call extended Euclidean algorithm to compute V and W such that V G+WH = 1, deg(V ) < deg(H) and

deg(W ) < deg(G); for l from 1 to dx − 1, let W
(l)
i (x, 1) := rem(xW

(l−1)
i , G, x), where W

(0)
i (x, 1) = W .

Step 2 (HomogenizeW
(l)
i (x, 1)). Homogenize eachW

(l)
i (x, 1) such that W

(l)
i (x, y) is homogeneous poly-

nomial with total degree di with respect to x and y. Return W
(l)
i (x, y).



Wu W Y et al. Sci China Math October 2014 Vol. 57 No. 10 2129

Remark 2.3. If G,H ∈ Z[x], then ‖W‖∞ 6 max{‖G‖∞, ‖H‖∞}degG+degH−1 by the resultant the-

ory (see e.g., [12, Subsection 3.5, Proposition 9]). Therefore, ‖W (l)
i ‖∞ 6 max{‖G‖∞, ‖H‖∞}degG+degH .

Here ‖ · ‖∞ represents the ∞-norm for a polynomial, i.e., the maximum of the absolute values of the

coefficients of a polynomial.

Proposition 2.4. Algorithm 2.2 works correctly and requires O(r log dx M(dx)+ d2x) arithmetic oper-

ations.

Proof. The correctness of Algorithm 2.2 follows from Lemma 2.1 and its proof. In Step 1, for computing

H we can first compute
∏

hi(x, 1). The product of r univariate polynomials whose degree sum is dx
takes O(M(dx) log r) operations [19, Chapter 10]. We then compute H for i from 1 to r with at most

rM(dx) operations. From [19, Chapter 11], the extended Euclidean algorithm costs O(M(dx) log dx)

operations. Here we call extended Euclidean algorithm r times. This needs O(rM(dx) log dx) operations.

Furthermore, computing all W
(l)
i (x, 1) by division with remainder costs O(rM(dx)). From Lemma 2.1,

W
(l)
i (x, y) is homogeneous polynomial of total degree di with respect to x and y. Thus for each l, it costs

at most d1 + · · ·+ dr = dx operations to homogenize W
(l)
i (x, y) for i = 1, . . . , r, and hence Step 2 of the

above algorithm costs at most O(d2x) operations. Thus Algorithm 2.2 uses in total O(r log dx M(dx)+d2x)

operations.

2.2 Lifting

Recall the mod operation (Definition 1.4) and

Ik(n) := {xjy−(n−j)δ̂/d̂ · yk/d̂ : j = 0, . . . , n}, (2.3)

where δ̂ and d̂ > 0 are two integers such that gcd(δ̂, d̂) = 1 and δ̂/d̂ is the slope of the Newton line of f ;

if the slope is 0 then δ̂ = 0 and d̂ = 1.

In what follows, let ŷ = y−δ̂/d̂. Then each element in Ik(n) can be seen as a product of yk/d̂ and an n

degree homogeneous part xj ŷn−j.

If n = dx, then we denote Ik by Ik(dx), where dx is the degree of f in x. From Definition 1.3, it follows

that any monomial of f is contained in Ik for some integer k. For instance, each monomial of f (0)(x, y)

lies in I0, i.e.,

f (0) ≡ 0 mod I0 and f (0) ≡ f mod I1. (2.4)

From the geometric point of view, each Ik corresponds to a line parallel to the Newton line, and f ≡ g

mod Ik means all monomials of f − g lie above the line corresponding to Ik−1 (see Example 1.6).

Lemma 2.5. Let all notations be as above. Let Ĝi (i = 1, . . . , r) be polynomials in x and ŷ with

r > 2 and degx(Ĝi) = di > 1. For a fixed integer 2 6 m 6 r, if each monomial of Ĝi lies in Ik(di) for

i = 1, . . . ,m, and Ĝj ≡ G
(0)
j mod I1(dj) for j = m+ 1, . . . , r, then

m
∏

i=1

Ĝi

r
∏

j=m+1

Ĝj ≡ 0 mod Ik+1(dx), (2.5)

where dx = degx(Ĝ1 · · · Ĝr) and k > 1.

Proof. Denote the product in (2.5) by P = P1 · P2. We consider the low degree in y of the coefficient

of xj of P , denoted by ldeg(coeff(P, xj), y). Then

ldeg(coeff(P, xj), y) = ldeg

(

∑

ℓ1+ℓ2=j

coeff(P1, x
ℓ1) · coeff(P2, x

ℓ2), y

)

>
(d1 + · · ·+ dm − ℓ1) · (−δ̂)

d̂
+

mk

d̂
+

(dm+1 + · · ·+ dr − ℓ2) · (−δ̂)

d̂
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>
(2k − δ̂(dx − j))

d̂
>

(k + 1− δ̂(dx − j))

d̂
,

where the first inequality is from that each monomial of Ĝi lies in Ik(di) for i = 1, . . . ,m and that

Ĝj ≡ G
(0)
j mod I1(dj) for j = m+1, . . . , r, the second inequality is from m > 2, and the last one is from

k > 1. Then this lemma follows from Definition 1.4.

This lemma plays an important role during the lifting stage. Although the proof of Lemma 2.5 does

not work for k = 0, we still have the following lemma about the relation between the Newton polynomial

and the initial factors of f .

Lemma 2.6. Let f be a bivariate polynomial in Z[x, y], f (0) its Newton polynomial, Gi its irreducible

factors, and G
(0)
i its initial factors for i = 1, . . . , r. Then

f (0) = G
(0)
1 · · ·G(0)

r .

Proof. From Definition 1.5, we have

G
(0)
i ≡ 0 mod I0(di),

G
(0)
i ≡ Gi mod I1(di).

Then, by Definition 1.4, it is easy to check

G
(0)
1 · · ·G(0)

r ≡ 0 mod I0,

G
(0)
1 · · ·G(0)

r ≡ G1 · · ·Gr mod I1.

Then this lemma follows from (2.4).

We now present the generalized Hensel lifting, in which we use Ik (k = 1, 2, . . .) as moduli. Geometri-

cally speaking, we lift all factors by y1/d̂, along the positive direction of ey axis (see Figure 2), in each

lifting step.

Theorem 2.7 (Generalized Hensel lifting). Let f ∈ Z[x, y] satisfy Hypothesis (H) and G1, . . . , Gr be

its irreducible factors. Let f (0) be the Newton polynomial of f , G
(0)
1 , . . . , G

(0)
r (r > 2) the initial factors

of f with degx G
(0)
i = di > 1, and Ik (k = 0, 1, 2, . . .) as in (2.3). Then, for any nonnegative integer k,

we can construct ∆G
(k)
i ∈ Z[x, y], with each monomial lying in Ik(di), satisfying

Gi ≡ G
(0)
i +

k
∑

j=0

∆G
(j)
i mod Ik+1(di), (2.6)

f ≡
r
∏

i=1

(

G
(0)
i +

k
∑

j=0

∆G
(j)
i

)

mod Ik+1.

Moreover, this construction is unique.

Proof. By induction on k. When k = 0, let ∆G
(0)
i = 0 for i = 1, . . . , r. Then this theorem follows from

Lemma 2.6. Suppose this theorem is true up to k − 1 (k > 1). Let

G
(k−1)
i = G

(0)
i +

k−1
∑

j=0

∆G
(j)
i .

By induction assumptions,

f(x, y) ≡
r
∏

i=1

G
(k−1)
i (x, y) mod Ik.

Let

∆f (k)(x, y) = f(x, y)−
r
∏

i=1

G
(k−1)
i (x, y) mod Ik+1. (2.7)
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Then ∆f (k)(x, y) ∈ Z[x, y] can be expressed as

∆f (k)(x, y) = c
(k)
dx−1 · xdx−1ŷ + · · ·+ c

(k)
0 · ŷdx ,

c
(k)
l = a

(k)
l yk/d̂, a

(k)
l ∈ Z, l = 0, . . . , dx − 1.

(2.8)

From Lemma 2.1, we compute the corresponding W
(l)
i for G

(0)
i , where i = 1, . . . , r and l = 0, . . . , dx − 1.

Then we construct ∆G
(k)
i as

∆G
(k)
i (x, y) =

dx−1
∑

l=0

W
(l)
i (x, ŷ)c

(k)
l , (2.9)

whose monomials are obviously in Ik(di). Now, let G
(k)
i (x, y) = G

(k−1)
i (x, y) + ∆G

(k)
i (x, y). Then

f −
r
∏

i=1

G
(k)
i = f −

r
∏

i=1

(G
(k−1)
i +∆G

(k)
i ) mod Ik+1

≡ f −
( r
∏

i=1

G
(k−1)
i +

r
∑

i=1

∆G
(k)
i

G
(0)
i

r
∏

j′=1

G
(0)
j′

+
r

∑

i=1

r
∑

j=1

∆G
(k)
i ∆G

(k)
j

G
(0)
i G

(0)
j

r
∏

j′=1

G
(0)
j′ + · · ·

)

mod Ik+1.

Since each monomial of ∆G
(k)
i (x, y) is in Ik(di), from Lemma 2.5 we have

r
∑

i=1

r
∑

j=1

∆G
(k)
i ∆G

(k)
j

G
(0)
i G

(0)
j

r
∏

j′=1

G
(0)
j′ + · · · ≡ 0 mod Ik+1.

Hence,

f −
r
∏

i=1

G
(k)
i ≡ ∆f (k) −

r
∑

i=1

∆G
(k)
i

G
(0)
i

r
∏

j′=1

G
(0)
j′ mod Ik+1,

and then substituting ∆G
(k)
i by the expression in (2.9) to this equation gives

f −
r
∏

i=1

G
(k)
i ≡ ∆f (k) −

r
∑

i=1

∑dx−1
l=0 c

(k)
l W

(l)
i

G
(0)
i

r
∏

j′=1

G
(0)
j′ mod Ik+1

≡ ∆f (k) −
dx−1
∑

l=0

c
(k)
l

r
∑

i=1

W
(l)
i

∏r
j′=1 G

(0)
j′

G
(0)
i

mod Ik+1

≡ ∆f (k) −
dx−1
∑

l=0

c
(k)
l xlŷdx−l mod Ik+1,

where the last equality is from the property of Moses-Yun polynomials in Lemma 2.1. From (2.8) we

have

f(x, y) ≡
r
∏

i=1

G
(k)
i (x, y) mod Ik+1.

Moreover, the uniqueness of ∆G
(k)
i follows directly from the uniqueness of Moses-Yun polynomials. Mean-

while, the uniqueness of the construction of ∆G
(k)
i implies (2.6) holds, and hence ∆G

(k)
i ∈ Z[x, y].

Remark 2.8. The basic idea of Theorem 2.7 is similar to the extended Hensel construction in the

work of Sasaki et al., such as [51, Theorem 1], but they are different in the following aspects. Firstly,

our initial factors of f are redefined to be G
(0)
1 , . . . , G

(0)
r in this article. In [51], the initial factors are

the irreducible factors in Z[x, ŷ] of the Newton polynomial f (0). Secondly, [51, Theorem 1, (3.11)] claims

that G
(k)
i ≡ G

(0)
i mod I1, which is not true. From Theorem 2.7, we can only infer that G

(k)
i ≡ G

(0)
i



2132 Wu W Y et al. Sci China Math October 2014 Vol. 57 No. 10

mod I1(di) holds for i = 1, . . . , r. Thirdly, this theorem implies that all G
(k)
i = G

(0)
i +∆G

(1)
i + · · ·+∆G

(k)
i

are in always Z[x, y], while G
(k)
i lies in C{y1/d̂}[x] in the work of Sasaki et al. The reason is the new

definition of initial factors, which makes the results of each lifting step be always in Z[x, y]. From these

points of view, the generalized Hensel lifting is not only a simple generalization, but also a modification

of the extended Hensel construction in the work of Sasaki et al.

Remark 2.9. From (2.6), we have Gi ≡ G
(k)
i mod Ik+1(di), i.e., each lifted factor G

(k)
i is always a

part of Gi and tends to Gi when k increases. We then have some benefits. It is obvious but important

that the lifting process do not impact on the sparsity of ∆f (k), since it follows from (2.6) that ∆f (k) is

always a part of f , too. Moreover, the number of terms of ∆f (k) will be smaller and smaller when k tends

to be larger and larger. Therefore, the lifting process terminates as soon as ∆f (k) = 0. This property

is different from the classical Hensel lifting and the extended Hensel construction, in both of which the

expression swell may occur.

Remark 2.10. The uniqueness of the Moses-Yun polynomial is a very important part in the proof

of Theorem 2.7. From Lemma 2.1, the uniqueness is a direct consequence of Hypothesis (Hc. In other

words, Hypothesis (Hc) guarantees the uniqueness of the generalized Hensel lifting.

As a by-product of Theorem 2.7, we can prove the following interesting result, which will be used in

Section 3.

Corollary 2.11. Let f ∈ Q[x, y] satisfy Hypothesis (H) and G1, . . . , Gr be its irreducible factors over Q.

Then the number of non-zero terms of Gi is not more than (T + 1)(di + 1), where T is the number of

non-zero terms of f , and di is the degree of Gi with respect to x.

Proof. From the generalized Hensel lifting, there exists some positive integer k such that Gi = G
(0)
i +

∆G
(1)
i + · · ·+∆G

(k)
i . Here k 6 T as the number of layers of Gi is always less than that of f (see Figures 1

and 2), and the number of layers of f is less than T . Furthermore, since G
(0)
i is homogeneous with

degree di in x and y, the number of non-zero terms is not more than di +1. By (2.9), each ∆G
(j)
i has at

most di + 1 non-zero terms, which completes the proof.

Based on Theorem 2.7, we present the following algorithm to lift all factors by y1/d̂.

Algorithm 2.12 (Lifting). Input: A bivariate polynomial f ∈ Z[x, y] satisfying Hypothesis (H), Moses-

Yun polynomials W
(l)
i (x, ŷ) of its initial factors for i = 1, . . . , r, l = 0, . . . , dx − 1 and G

(k−1)
1 , . . . , G

(k−1)
r

such that f ≡ G
(k−1)
1 · · ·G(k−1)

r mod Ik. Output: G
(k)
1 , . . . , G

(k)
r such that f ≡ G

(k)
1 · · ·G(k)

r mod Ik+1.

Step 1 (Compute ∆f (k)). Compute ∆f (k) := f −G
(k−1)
1 · · ·G(k−1)

r mod Ik+1.

Step 2 (Produce ∆G
(k)
i ). Express ∆f (k) as

∆f (k)(x, y) = c
(k)
dx−1 · xdx−1ŷ + · · ·+ c

(k)
0 · ŷdx ,

c
(k)
l = a

(k)
l yk/d̂, a

(k)
l ∈ Z, l = 0, . . . , dx − 1.

For i from 1 to r, let ∆G
(k)
i (x, y) :=

∑dx−1
l=0 W

(l)
i c

(k)
l , and G

(k)
i := G

(k−1)
i +∆G

(k)
i . Return G

(k)
i .

Proposition 2.13. Algorithm 2.12 works correctly. It requires O(M(dxdy) + rdx) arithmetic opera-

tions.

Proof. The correction follows from Theorem 2.7. By Kronecker substitution, two polynomials in Z[x, y]

of degree less than n in x and d in y can be multiplied using O(M(nd)) operations. Since the degrees

of G
(k−1)
1 · · ·G(k−1)

r in x and y are not more than dx and dy , respectively, Step 1 can be done by means

of the sub-product tree technique in [19, Chapter 10] with O(M(dxdy)) operations. Since each W
(l)
i is a

homogeneous polynomial in x and ŷ of total degree di, it has at most di + 1 non-zero terms. Moreover,

each c
(k)
l is monomial. So all G

(k)
i can be computed with O(rdx) operations. Totally, Algorithm 2.12

uses O(M(dxdy) + rdx) operations.
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So far, we have proposed an efficient method to lift the initial factors towards the irreducible factors.

The lifting method preserves the sparsity of the input polynomial, and hence no intermediate expression

swell happens. In next section, we will give a recombination strategy to obtain the correct initial factors.

3 Recombination for initial factors

Recall that δ̂ and d̂ > 0 are two integers such that gcd(δ̂, d̂) = 1 and δ̂/d̂ is the slope of the Newton line

of f . If the slope is 0 then δ̂ = 0 and d̂ = 1. If δ̂ = 0 then the Newton polynomial f (0) is a univariate

polynomial in x (because of Hypothesis (Ha), f has no univariate factors, including power of y), else f (0)

is a homogeneous polynomial with respect to x and ŷ = y−δ̂/d̂. Therefore, the irreducible factorization

of the Newton polynomial can be deduced from that of the univariate polynomial f (0)(x, 1), denoted by

f (0)(x, y) = f (0)(x, ŷ) = g1(x, ŷ) · · · gs(x, ŷ), where gi(x, ŷ) for i = 1, . . . , s are in Z[x, ŷ]. Consequently

we have the following result.

Proposition 3.1. Factoring the Newton polynomial f (0)(x, y) in Z[x, ŷ] is equivalent to factoring a

univariate polynomial over Z whose degree is at most dx.

However, it is not always the case that g1, . . . , gs are exactly the initial factors.

Example 3.2. For the polynomial in Example 1.6, we have ŷ = y1/2 and f (0)(x, ŷ) = (x4 + ŷ4)(x2

+ ŷ2)(x2 − 2ŷ2) , g1g2g3, but the initial factors are G
(0)
1 = x4 + y2 = g1 and G

(0)
2 = x4 − 4y2 = g2g3.

This is somewhat similar to the extraneous factors problem. Here it is unavoidable, too. That is

to say, f (0)(x, y) may have more factors than f(x, y) does, i.e., r 6 s. In this section, we introduce

a method, based on approximation theory and linear algebra, which combines g1, . . . , gs to the initial

factors G
(0)
1 , . . . , G

(0)
r of f when r < s.

3.1 Recombination method

For simplicity, we only discuss the case that the slope of the Newton line of f is −1, i.e., δ̂ = −1, d̂ = 1

and ŷ = y. The same strategy works for any other case. Then the factorization of the Newton polynomial

is now

f (0)(x, y) = g1(x, y) · · · gs(x, y). (3.1)

We now describe the idea behind the combination method. From Lemma 2.6, the product of the initial

factors is the Newton polynomial. Thus there must exist a unique vector µi = (µj,i) ∈ {0, 1}s such that

G
(0)
i =

∏s
j=1 g

µj,i

j for i = 1, . . . , r. After taking natural logarithm, we have

LnG
(0)
i =

s
∑

j=1

µj,iLn gj, (3.2)

where Lnz represents the complex natural logarithm function for z ∈ C. Thus if we can evaluate (3.2) at

some points (xi, yi), then we can construct a linear system, from which it is possible to solve for the 0-1

vector µi. However, we do not know G
(0)
i in advance, but fortunately, we can approximate it.

Let f have r irreducible rational factorsG1, . . . , Gr. By Theorem 2.7, there exists an integer ki such that

Gi = G
(0)
i +

∑ki

k=1 ∆G
(k)
i for i = 1, . . . , r, where each monomial of ∆G

(k)
i lies in Ik(di) and di = degx G

(0)
i .

By the definition of Newton line and Hypothesis (Ha), we have degx Gi = di. Let w = y/x. Then Gi/x
di

can be expressed as

Gi

xdi
=

G
(0)
i

xdi
+

ki
∑

k=1

∆G
(k)
i

xdi
= G

(0)
i (w) + g

(1)
i (w) · y + · · ·+ g

(ki)
i (w) · yki , (3.3)

where g
(k)
i ∈ Z[w] satisfies xdiyk · g(k)i = ∆G

(k)
i for k > 1. Thus if we choose an evaluation point (x, y)

such that w ∼ O(1) and y ∼ o(1), then
∣

∣

∣

∣

Gi

xdi
− G

(0)
i

xdi

∣

∣

∣

∣

∼ o(1), (3.4)
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where y ∼ o(1) means that y is sufficiently small.

Now, we give the following combination algorithm.

Algorithm 3.3 (Combine). Input: A bivariate polynomial f ∈ Z[x, y] satisfying Hypothesis (H) with

degree dx in x, g1, . . . , gs, the factors of f
(0), and an arbitrary positive numberM . Output: G

(0)
1 , . . . , G

(0)
r ,

i.e., the initial factors of f .

Step 1 (Construct coefficient matrix). Let z = y/x. Then gj(x, y)/x
degx gj = gj(1, z) by the homogene-

ity of the Newton line. Choose s random numbers z1, . . . , zs ∈ C uniformly with absolute value 6 M ,

set A := (ai,j)s×s with ai,j := Re (Ln (gj(1, zi))), and let Ã = (ãi,j) = A+ δA with ãi,j ∈ Q and

‖δA‖∞ 6
1

10‖A−1‖∞
. (3.5)

Compute Ã−1 and its infinity norm ‖Ã−1‖∞.

Step 2 (Determine evaluation points). Let T be the number of nonzero terms of f . Set

δi =

s
∏

j=1

min{|ãi,j|, 1}.

Let y0 be a random rational number such that

|y0| < min
{

min
16i6s

{1/δi}(4‖Ã−1‖∞(T + 1)(dx + 1)MdxN)−1, 1
}

, (3.6)

where N = 2d
2

x(dx +1)dx/2‖f‖dx+1
∞

. Call a symbolic algorithm to factorize f(x, y0) over Q[x] and denote

by the factors G̃1(x), . . . , G̃r(x). If r = s then return g1, . . . , gs. Set xi := y0/zi for i = 1, . . . , s and

B := (bi,j)s×r, where bi,j := Re(Ln(G̃j(xi)/x
dj

i )).

Step 3 (Solve linear system). Compute U := Ã−1B = (ui,j)s×r , let µi,j := ⌊ui,j + 0.5⌋ and G
(0)
i :=

∏s
j=1 g

µj,i

j . Return G
(0)
1 , . . . , G

(0)
r .

3.2 Analysis of recombination

Lemma 3.4. The matrix A in Step 1 of Algorithm 3.3 is invertible with probability 1.

Proof. Denote gj(z) = gj(1, z) for j = 1, . . . , s. From complex analysis, Lnz = ln|z|+ I · Arg z, where
I =

√
−1 and Arg z is the argument of z ∈ C. Then ai,j = ln |gj(zi)| in Step 1 of Algorithm 3.3. Assume

the rank of

A =















ln |g1(z1)| ln |g2(z1)| · · · ln |gs(z1)|
ln |g1(z2)| ln |g2(z2)| · · · ln |gs(z2)|

· · · · · · . . . · · ·
ln |g1(zs)| ln |g2(zs)| · · · ln |gs(zs)|















is k < s for z1, . . . , zs in Step 1 of Algorithm 3.3. Without loss of generality, we assume that the k × k

principal minor is not singular. We now consider the following equation system with respect to λj ∈ R,

λ1 ln |g1(zi)|+ · · ·+ λs−1 ln |gs−1(zi)| = ln |gs(zi)|, (3.7)

where i = 1, . . . , s − 1 and j = 1, . . . , s − 1. From linear algebra, we know the system (3.7) has at least

one solution. Let λ1, . . . , λs−1 be an arbitrary solution of the system. Then for z1, . . . , zs−1, we have

|g1(zi)λ1 . . . gs−1(zi)
λs−1 | = |gs(zi)|.

For z = x+ I y ∈ C with x, y ∈ R, let C(z) = |c(z)|− |gs(z)|, where c(z) = g1(z)
λ1 · · · gs−1(z)

λs−1 . Let

zs = xs + I ys be the s-th complex number selected in Step 1 of Algorithm 3.3. By the assumption on

the rank of A we have C(zs) = 0.

However, C(z) can be considered as a bivariate real function with respect to the real and the imaginary

part of z, written C(x, y). We assert that C(x, y) is not a zero function. In fact, if z0 = x0 + I y0 is a
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zero point of c(z), then gs(z0) is not zero since the initial factors of the input polynomial are co-prime,

and hence C(x0, y0) 6= 0. Note that the selection of zs is independent of z1, . . . , zs−1, and the selection

of xs is independent of ys. Thus for a random xs ∈ R, C(xs, y) is also not a zero function, and hence for

a random ys ∈ R, C(xs, ys) 6= 0 holds with probability 1. This contradicts C(zs) = 0.

Remark 3.5. From the analysis above, the positive integer M is to ensure the matrix A is invertible

with probability 1. The proof works for any M > 0.

Proposition 3.6. Algorithm 3.3 works correctly if the random y0 satisfies that

f(x, y0) = G̃1(x) · · · G̃r(x),

where Gi(x, y0) = G̃i(x) for i = 1, . . . , r.

Proof. From Lemma 3.4, the matrix A is invertible with probability 1, and hence the infinity norm of

A−1 is finite. From the condition in this proposition, we have Gi(x, y0) = G̃i(x) for i = 1, . . . , r.

From another aspect, we have to control the error of the solutions of AU = B such that we can get

the correct µi,j ’s by rounding the solutions. For simplicity, we only consider the first initial factor G
(0)
1 .

Denote Au = b for the exact case and Ã · (u+ δu) = b+ δb for the perturbed case, where Ã = A+ δA, u

and b are the first column of U and B, respectively, and δA, δu and δb are the perturbations.

We have ‖A−1 ·δA‖ < 1 from (3.5), and hence by [22, Theorem 2.3.4], Ã is also invertible, which means

‖Ã−1‖∞ is computable. We now analyze

‖δb‖∞ = max
16j6s

{|Re(Ln(G1(xj , y0)/x
d1

j ))− Re(Ln(G
(0)
1 (xj , y0)/x

d1

j ))|}

= max
16j6s

{| ln |G1(xj , y0)/x
d1

j | − ln |G(0)
1 (xj , y0)/x

d1

j ||}.

Let us recall (3.3),

G1

xd1

=
G

(0)
1

xd1

+

k1
∑

k=1

∆G
(k)
1

xd1

= G
(0)
1 (w) + g

(1)
1 (w) · y + · · ·+ g

(k1)
1 (w) · yk1 .

Denote G1(xj , y0)/x
d1

j = G
(0)
1 (zj) + Ḡ1(zj, y0) · y0, where Ḡ1(zj , y0) =

∑k1

k=1 g
(k)
1 (zj) · yk−1

0 . So we have

‖δb‖∞ = max
16j6s

{∣

∣

∣

∣

ln

∣

∣

∣

∣

G
(0)
1 (zj) + Ḡ1(zj , y0) · y0

G
(0)
1 (zj)

∣

∣

∣

∣

∣

∣

∣

∣

}

= max
16j6s

{∣

∣

∣

∣

ln

∣

∣

∣

∣

1 +
Ḡ1(zj , y0) · y0

G
(0)
1 (zj)

∣

∣

∣

∣

∣

∣

∣

∣

}

6 max
16j6s

{

ln

(

1 +

∣

∣

∣

∣

Ḡ1(zj , y0) · y0
G

(0)
1 (zj)

∣

∣

∣

∣

)}

6 max
16j6s

{∣

∣

∣

∣

Ḡ1(zj , y0) · y0
G

(0)
1 (zj)

∣

∣

∣

∣

}

6 max
16j6s

{

|Ḡ1(zj , y0) · y0| · min
16i6s

{δi}
}

6 (T + 1) · (dx + 1) ·Mdx ·N · δ1 · |y0|.

The first inequality is from |1 + z| 6 1 + |z| for z ∈ C; the second inequality is from ln(1 + x) 6 x for

x > −1; the third one is from |G(0)
1 (zj)| > δ1 > min16i6s {δi} and G

(0)
1 =

∏s
j=1 g

µj,1

j . Additionally, for

each monomial zaj y
b
0 in Ḡ1(zj , y0), we have |zaj yb0| 6 |zd1

j | 6 Mdx since |y0| < 1 and |zj | 6 M . From

Remark 2.3 and (2.9), we have ‖G1‖∞ 6 N , so that the last inequality is from the number of nonzero

terms of factors is not more than (T + 1) · (dx + 1), by Corollary 2.11. Therefore if y0 satisfies (3.6), we

have

‖Ã−1‖∞ · ‖δb‖∞ <
1

4
. (3.8)
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Furthermore, from [22, Theorem 2.3.4] and (3.5),

‖Ã−1‖∞ · ‖δA‖∞ 6

(

‖A−1‖∞ + ‖δA‖∞
‖A−1‖2

∞

1− ‖A−1δA‖∞

)

· ‖δA‖∞

6 2(‖A−1‖∞‖δA‖∞)2 + (‖A−1‖∞‖δA‖∞) <
1

4
.

(3.9)

Now we have ‖δu‖∞ = ‖Ã−1(δb+δA ·u)‖∞ 6 ‖Ã−1‖∞(‖δb‖∞+‖δA‖∞) < 1/2, where the first inequality

is from ‖u‖∞ = 1, and the second one is from (3.8) and (3.9). This completes the proof.

Proposition 3.7. Algorithm 3.3 requires O(sω + M(dx) log s) operations to reduce the combination

to the computation of univariate polynomial factorization over Q whose degree is at most dx.

Proof. For i 6 s, we first evaluate gj(1, zi) by fast multipoint evaluation. This requires O(M(dj) log s)

operations, and hence constructing A has cost O(M(d1) log s+ · · ·+M(ds) log s) ⊂ O(M(dx) log s) by

the super-additivity of M . Similarly, constructing B requires the same operations. Computing A−1

and multiplying A−1 and B have cost O(sω). By Hypothesis (Hb), f is monic, and hence the degree of

f(x, y0) is dx.

Our combination algorithm is in fact based on the idea of “linearization”, i.e., reducing the problem of

combination to solving a system of linear equations. The basic idea is the use of logarithms, which has been

successfully applied to polynomial factorization, such as trace recombination [23, 52–54] and logarithmic

derivative recombination [5, 8, 39, 43]. However, we use a novel strategy to construct the linear system

after taking logarithm. We choose some different points to evaluate the equation (3.2). Although we

only get some approximate equations, we analyze the error control. If we choose the evaluation points

satisfying the error controlling conditions, we can solve correctly for these 0–1 vectors. This is different

from existing methods in literature.

4 Main algorithm and analysis

In this section, we describe our factorization algorithm, give a typical example to better illustrate the

key steps of the algorithm, and analyze its complexity.

Algorithm 4.1 (BiFactor). Input: A bivariate polynomial f ∈ Z[x, y] satisfying Hypothesis (H).

Output: A factorization of f over Z.

Step 1 (Determine Newton polynomial). Compute L = (l1, l2) and R = (r1, r2) the two endpoints of

the Newton line, f (0)(x, y) the Newton polynomial of f . Set dx := degx f and dy := degy f .

Step 2 (Factorize Newton polynomial). If l2 = r2 = 0 then f (0) is a univariate polynomial, else f (0) is a

homogeneous polynomial of total degree r2l1−r1l2
r2−l2

with respect to x and ŷ, where ŷ = y
−

l2−r2
l1−r1 . Let d̂ and

δ̂ be nonnegative integers such that δ̂
d̂
= | l2−r2

l1−r1
| is an irreducible fraction. If | l2−r2

l1−r1
| = 0 then let δ̂ := 0

and d̂ := 1. Let Ik := {xj ŷdx−j · yk/d̂ : j = 0, . . . , dx}. Factorize f (0)(x, 1) using a univariate polynomial

factorization algorithm and then get the factorization in Z[x, ŷ]: f (0)(x, y) = g1(x, ŷ) · · · gs(x, ŷ).
Step 3 (Combine). Call Algorithm 3.3 with g1(x, ŷ), . . . , gs(x, ŷ) and f . Let the combined factors be

G1(x, y), . . . , Gr(x, y). Let ∆f := f − f (0). If ∆f = 0 then return G1, . . . , Gr.

Step 4 (Moses-Yun). Call Algorithm 2.2 feeding with initial factors to compute W
(l)
i (x, ŷ).

Step 5 (Determine moduli). Let k be the maximum integer such that ∆f ≡ 0 mod Ik and use Ik+1

as the modulus of the generalized Hensel lifting.

Step 6 (Lifting). Compute ∆f (k) := ∆f mod Ik+1. For i from 1 to r, let

∆Gi(x, y) :=

dx−1
∑

l=0

W
(l)
i c

(k)
l

and update Gi := Gi +∆Gi.
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Step 7 (Finished). Set ∆f := f −G1 · · ·Gr. If ∆f = 0 then return G1, . . . , Gr, else go to Step 5.

Remark 4.2. In practice, we use one technique to deal with the case that the evaluation point is

not good: If ∆f in the step 7 of Algorithm 4.1 includes some terms that do not appear in the input

polynomial f(x, y), we then stop lifting and choose another evaluation point for redoing recombination.

Thus, if the algorithm returns a factorization, then it must be the irreducible factors of the input bivariate

polynomial. In fact, the number of irreducible factors of the image of the evaluation homomorphism will

never be less than the exact number of irreducible factors of the original polynomial. So, a bad evaluation

must imply that r, in Step 3 of Algorithm 4.1, is strictly larger than the exact number of irreducible

factors, and then during the lifting step, there will be at least one extra term that does not appear in the

input bivariate polynomial. This phenomenon is easy to check in practice. Once this happens, we choose

another evaluation point and redo recombination.

Here, we use the following simple example to illustrate the main steps of our factorization algorithm.

Example 4.3. We consider again the polynomial in Example 1.6: f = x8 − 3 x4y2 + 5 x4y5 − 4 y4

+ 5 y7 + 2 y3x4 − 8 y5 + 10 y8. The Newton polynomial of f is

f (0)(x, y) = x8 − 3 x4y2 − 4 y4 = (x2 + ŷ2)(x2 + 2 ŷ2)(x2 − 2 ŷ2) , g1g2g3,

where δ̂ = −1, d̂ = 2 and hence ŷ = y
1

2 . Thus

I0 = {y4, xy 7

2 , x2y3, x3y
5

2 , x4y2, x5y
3

2 , x6y, x7y
1

2 , x8}.

In the combination stage, we construct a linear system by specialization. First, letting z1 = 2
5e

π
11

I , z2 =
7
5e

27π
55

I , z3 = e
49π
55

I and y0 = 1/223, we can get the following linear system













200466
6353

355429
21663

120385
7398

88198
3365

47978
4353

185008
12743

120647
4175

79463
5347

100672
7121





















µ1,1 µ1,2

µ2,1 µ2,2

µ3,1 µ3,2









=













272848
8645

117484
3595

68722
2621

296190
11597

615298
21291

60868
2099













.

Solving this linear system and rounding the solutions give two 0-1 vectors (1, 0, 0) and (0, 1, 1), which

means the initial factors are G
(0)
1 = g1 = x4 + y2 and G

(0)
2 = g2g3 = x4 − 4 y2. Now, ∆f = 5 x4y5 + 5 y7

+ 2 y3x4 − 8 y5 + 10 y8. Since only x0 and x4 appear in ∆f , we only need to compute W
(l)
i for l = 0, 4

instead of l from 0 to 7 (= dx − 1):

W
(0)
1 =

1

5
y2, W

(0)
2 = −1

5
y2,

W
(4)
1 =

4

5
y2, W

(4)
2 =

1

5
y2.

Since ∆f = x4y2 · (5y6/d̂) + y4 · (5y6/d̂) + x4y2 · (2y2/d̂) + y4 · (−8y2/d̂) + y4 · (10y8/d̂), we have k = 2

is the maximum integer satisfying ∆f ≡ 0 mod Ik. Then compute ∆f (2) ≡ ∆f mod I3 ≡ x4y2 · (2y2/d̂)
+ y4 · (−8y2/d̂). Hence, c

(2)
7 = c

(2)
6 = c

(2)
5 = 0, c

(2)
4 = 2y, c

(2)
3 = c

(2)
2 = c

(2)
1 = 0, c

(14)
0 = −8y. Thus, we

have

G1 := G1 +∆G1 = G1 + (W
(0)
1 c

(2)
0 +W

(4)
1 c

(2)
4 ) = x4 + 2 x2y + y2 + 2 y3,

G2 := G2 +∆G2 = G2 + (W
(0)
2 c

(2)
0 +W

(4)
2 c

(2)
4 ) = x4 − 4 y2.

Update ∆f = 5 x4y5 + 10 x2y6 + 5 y7 + 10 y8 6= 0. Then go to Step 5. After one more lifting step, the

algorithm returns the irreducible factors of f in Z[x, y]: G1 = x4+2 x2y+y2+2 y3 andG2 = x4−4 y2+5 y5.

Remark 4.4. Note that the condition for y0 in (3.6) is a little bit heavy. But it is just sufficient to

make sure that ‖δu‖ < 1
2 , and may not be necessary in practice. When implementing, one can try y0

with small size first, and if necessary, then use y0 with larger size, as in the above example.
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From this example, we get an intuition on how the BiFactor algorithm takes advantage of sparsity. On

the one hand, it may not always hold that all degrees from 0 to dx with respect to x appear for a generic

sparse polynomial. Thus we need not to compute all W
(l)
i , but only to compute those W

(l)
i such that xl

appears in ∆f . If the number of nonzero terms of the input polynomial T is less than dx, then Step 4

requires at most O (r log dx M(dx) + Tdx) operations, instead of O
(

r log dx M(dx) + d2x
)

operations in

Proposition 2.4. On the other hand, when the polynomial is dense, each lifting stage lifts the factors only

by y1/d̂. However, for a generic sparse polynomial, it usually holds that there exists no term lying in Ik
for some k. That’s to say for those k we have ∆f (k) = 0, which means ∆G

(k)
i = 0 for i = 1, . . . , r. We

thus can directly handle with the smallest k such that ∆f (k) 6= 0.

Proposition 4.5. Assume that there exists an effective version of the Hilbert irreducibility theorem

for bivariate polynomials over Z. Given a bivariate polynomial f over Q satisfying Hypothesis (H), the

BiFactor algorithm reduces the computation of the irreducible factors of f over Q to factoring univariate

polynomials with degree dx over Q in O(Trdx + T log rM(dxdy) + d2x + sω + r log dxM(dx)) or Õ(Trdx
+Tdxdy + d2x+ sω) arithmetic operations in Q, where T is the number of non-zero terms of f , dx and dy
are the degree of f with respect to x and y respectively, r is the number of irreducible factors of f , and s

is the number of factors in Z[x, ŷ] of the Newton polynomial of f .

Proof. By the assumption, Proposition 3.6 holds. Hypothesis (Ha) implies that di = degx G
(0)
i > 1.

Then the correctness of Algorithm 4.1 follows from Propositions 2.13, 3.1 and 3.6. We consider its

complexity in the following.

From Definition 1.2, it costs at most O(T ) operations to determine the Newton line of f . By Corol-

lary 3.1 and Proposition 3.7, it requiresO(sω+M(dx) log s) operations to reduce Steps 2 and 3 to factoring

univariate polynomials whose degree is at most dx. By Proposition 2.4, it has costO
(

r log dx M(dx) + d2x
)

to compute the Moses-Yun interpolation polynomials, where r is the number of irreducible factors of f

over Q. Step 6 has cost O(rdx) to compute ∆Gi by Proposition 2.13, and Step 7 has cost O(M(dxdy))

according to the proof of Proposition 2.13. Furthermore, the number of lifting is not larger than T since

the number of non-zero terms of ∆f decreases at least by 1 in each lifting. At last Step 5 totally has cost

O(T ).

Therefore, Algorithm 4.1 needs O(Trdx + TM(dxdy) + d2x + sω + r log dxM(dx)) or Õ(Trdx + Tdxdy
+ d2x + sω) operations to reduce the computation of a bivariate polynomial factorization under Hypothe-

ses (H) to factoring univariate polynomials with degree at most dx.

Proof of Theorem 1.7. Without loss of generality we can assume that dx 6 dy. Then, by Proposition 4.5

the computation of the irreducible factorization of f satisfying Hypothesis (H) reduces to the univariate

polynomials factorization over Q whose degree is at most dx, plus Õ(Trdx+Tdxdy+d2x+sω) ⊂ Õ(Tdxdy
+ sω) arithmetic operations, where r 6 dx and 2 < ω 6 3 are used.

Again, we note that the main algorithm is not deterministic, since its validity depends on a good

specialization y0. Actually, if one has such a good choice, one can use directly the classical Hensel lifting

along the fiber y = y0, and its total complexity of the reduction from bivariate polynomial factorization to

univariate case would be in Õ(dxdy) rather than in Õ(Tdxdy+sω). But, as explained before, the classical

Hensel lifting does not use the sparsity of the input polynomial, which usually leads to expression swell.

Moreover, the experimental results in next section show the main algorithm in this article is efficient in

practice.

5 Experimental results

We have implemented the BiFactor algorithm in the computer algebra system Maple. In this sec-

tion, we give some details of our implementation and report some experimental results which show

the efficiency of our algorithm. All the test polynomials and the Maple package are available from

http://sites.google.com/site/jingweichen84.
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Table 1 Experimental results when recombination happening

no. dx dy T s timeMaple timeBiFactor

1 16 27 56 5 0.064 0.113

2 32 55 88 6 0.266 0.160

3 64 113 135 7 3.273 0.417

4 128 230 194 8 36.071 0.663

5 256 478 253 9 685.706 2.433

Table 2 Experimental results for Maple’s factor and BiFactor

no. d dx dy T timeMaple timeBiFactor

1 50 46 29 135 0.281 0.157

2 100 95 89 143 2.125 0.109

3 200 156 152 144 7.578 0.235

4 400 335 305 144 87.297 0.218

5 800 580 595 144 943.094 0.422

6 50 39 50 705 0.532 0.437

7 100 100 65 827 4.282 1.468

8 200 193 179 890 50.750 2.156

9 400 306 302 746 208.515 2.110

10 800 784 613 912 10301.844 4.578

It is well known that there exists the phenomenon of intermediate expression swell in many applications,

for example computing gcd of two polynomials with rational coefficients. Thus we use modular arithmetic

to compute Moses-Yun polynomials. As seen from previous sections, the total efficiency of our algorithm

heavily depends on the factorization of univariate polynomials over Q. For sparse case, there exists

many efficient algorithm, such as [14, 45, 46]. In our implementation, we call Maple’s built-in function

factor to compute all univariate polynomials. Moreover, for a polynomial f which does not satisfy

Hypothesis (Hc), we introduce the following kind of affine transformations ( xy ) := ( a b
c d )(

X
Y ), where ( a b

c d )

is an element of the group generated by ( 0 1
1 0 ), (

−1 0
0 1 ) and ( 1 0

0 −1 ) under matrix multiplication, and then

compute the factorization of F (X,Y ) = XmY nf(X,Y ) if F (X,Y ) satisfies Hypothesis (Hc), where m

and n are such integers that F (X,Y ) satisfies Hypothesis (Ha) and (Hb). Then the factorization of

f(x, y) can be inferred from that of F (X,Y ). Even though the affine transformation can be used to

extend the applicability of the BiFactor algorithm, the algorithm remains incomplete. The reason is one

can construct some polynomials, such as f = (xy + x3 + x2y5 + y4)(xy + x4 + x2y6 + y3), which do not

satisfy Hypothesis (Hc) under any above affine transformation.

We now report some experimental results. All of these tests were run on an AMD AthlonTM 7750

processor (2.70 GHz) with 2GB memory. In the following tables, timeMaple represents the running time

of Maple’s built-in function factor and timeBiFactor represents the running time of the BiFactor algorithm.

Time is shown in seconds. All univariate polynomial factorizations are computed directly by calling

Maple’s factor.

In Table 1, we investigate the efficiency of the BiFactor algorithm when the combination step is designed

to happen, i.e., s > r = 2. Each polynomial in Table 1 has only two irreducible factors, and its Newton

polynomial is xdx − ydx which can be factorized as s factors in Z[x, ŷ]. Hence we have to go into the

combination step. We note that the factorization of the Newton polynomial is easy to compute, however,

we have to factorize a univariate polynomial with degree dx during the combination stage. In spite of

this fact, we can learn from Table 1 that the BiFactor algorithm is efficient in this case.

The purpose of the trials in Table 2 is to compare the performances of Maple’s built-in function factor

with the BiFactor algorithm for some random polynomials. All test polynomials in Table 2 are of to-

tal degree d and constructed by multiplying two random polynomials with total degree d/2. Both of them
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Table 3 Experiments for polynomials with more than two irreducible factors

r d dx dy T timeMaple timeBiFactor

3 94 90 49 54 0.562 0.483

4 167 160 103 189 3.931 0.811

5 255 250 102 623 16.786 6.271

6 376 360 231 8336 151.711 56.239

are generated from the following Maple code. The first two terms are to ensure the input polynomial is

of degree d and has no monomial factors.

[> a := rand(0..d/2)();

[> rand(1..100)()*xˆa*yˆ(d/2 − a) + rand(1..100)() +randpoly([x, y], terms = t, degree = d/2).

The first 5 polynomials are generated with t := 10, i.e., each factor of the polynomials has 10 ∼ 12

non-zero terms. The last 5 polynomials are generated with t := 4 for the first factor and t := 150 for the

second factor. Evidently, our algorithm outperforms the Maple built-in factor.

The last test set in Table 3 is to investigate the performance of BiFactor when the input polynomial

has more than two irreducible factors. The number of irreducible factors ranges from 3 to 6. Accordingly,

the number of terms ranges from 54 to 8336. For these tests, BiFactor seems slower than that in Tables 1

and 2, because the test polynomials are denser than those in Tables 1 and 2. However, it is still much

faster than the Maple built-in function factor.

6 Conclusion

In this article, we present an algorithm, BiFactor, which factorizes bivariate polynomials over Q. It can

be seen as a polytope method. Unlike the traditional Hensel lifting based methods, it takes advantage of

sparsity because of the generalized Hensel lifting scheme. Another feature is that a novel recombination

strategy for computing the initial factors is used before the lifting stage. Although the validity of the

algorithm is based on Hypothesis (H), both theoretic analysis and experimental data show its efficiency.

Unfortunately, it is non-deterministic. We cannot even give a success probability because of lacking a

proven randomized Hilbert irreducibility theorem for bivariate polynomials. It is beyond the scope of

this article.

Our future work is to give a deterministic or probabilistic recombination methods for computing the

initial factors. The future directions also include: to weaken the Hypothesis (Hc), to analyze the bit-

complexity of our algorithm when using floating-point arithmetic operations, and to generalize the method

to polynomials with variables more than two.
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